设为首页收藏本站

中国电力科技论坛

 找回密码
 注册

QQ登录

只需一步,快速开始

搜索
热搜: 活动 交友 discuz
查看: 624|回复: 0
打印 上一主题 下一主题

焦炉煤气脱硫如何优化工艺操作条件提高硫磺产量(二)

[复制链接]
跳转到指定楼层
1#
华电之声 发表于 2015-2-22 09:17:22 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
(3)控制适宜的碱度(以满足出口H2S达标为限)不宜太高。合理调整溶液组分,不要突击加碱。再生液中pH>9.2也会使副盐生成率呈直线上升。

(4)强化再生。再生塔内的再生空气要能满足生产需要(最好单独供气)平稳适量。硫泡沫保持溢流,泡沫层不宜控制太厚(10-20公分即可),及时转移泡沫硫。

对硫磺产量的影响,不言而谕,副盐消耗的硫都源于H2S,其影响力不可低估。对于Na2S2O3而言,每生成1mol硫代硫酸盐就要消耗2mol的硫离子,生成158kg Na2S2O3,就要消耗60kgH2S,即脱硫液中的Na2S2O3的含量每升高1kg,就要消耗H2S为0.43kg;Na2SO4每升高1kg,就要消耗H2S为0.48kg;NaCNS每升高1kg,就要消耗H2S为0.84kg;同样也大量消耗碱。若超标排放还得损失催化剂,硫磺产量则递减。

三、减少损失、防止堵塔

堵塔的成因很复杂,堵塞物主要是硫、盐、机械性杂质等,一般情况多为硫堵。有工艺设备配置以及构造上的原因;随气体带入系统的粉尘、焦油、萘、苯等杂质太多;也有由于催化剂不佳;溶液组分控制不当;副反应物浓度太高;温度控制不宜;残液回收处理不到位等原因造成。从硫的角度看主要有两个原因:

(1)填料塔在脱硫反应过程中,同时伴随着氧化再生析硫过程,因此塔内实际上是气、液、固三相共存。若析硫过多,未能及时随溶液带出脱硫塔,势必滞留,附着,沉积于塔内件,填料内就会在其表面粘结导致局部堵塞,形成偏流、沟流、壁流,干区扩大便会发生堵塔。因此,要特别注意保证溶液循环量和喷淋密度,一般控制在40-50m3/m2h,塔径大应偏大些。(兼顾溶液在再生塔的停留时间,一般高塔30-45min;槽式12-15min)让氧化再生,解析的硫能及时分离出来,使反应生成的硫与带出的硫成正比,要求达到物料平衡。

(2)要将吸收贫液中悬浮硫含量控制在指标内(<1.5g/L),对其影响主要是再生塔,即加强再生、浮选、分离,关键是要控制好硫泡沫,强化再生塔的操作。

再生塔的功能有3个:①在空气的吹搅下,将元素硫浮选出来,分离出去;②催化剂吸氧再生,恢复活性;③进一步析硫再生和使CO2等废气解释驰放,提高pH值、碱度和减少悬浮硫含量。显然影响再生的主要因素是空气、温度和溶液在塔内的停留时间。最直观的是硫泡沫形成的好坏。大家对温度和停留时间都很重视,其实再生空气更为重要,对其有空气量和鼓风强度的双重要求。满足催化剂吸氧再生所需要的量,没问题(实际量是理论量的8-15倍,除非温度特别高,影响到O2的溶解度)。鼓风强度则直接影响硫泡沫层聚合形成,鼓风强度太低,溶液不湍动,则浮选不出硫来,液面翻腾跳跃,鼓风强度太大,又容易将聚合的硫泡沫打碎,造成返混,影响贫液质量。此外,泡沫硫的分离也有讲究:若分离太彻底,则泡沫层不易形成,集硫少且泡沫很虚(应适当保留部分泡沫层,沾的硫会更多)。若分离量太少或长时不溢流,则表面得不到更新,也容易造成返混,悬浮硫增多。因此,鼓风强度应控制在 100-130 m3/m2h为宜(亦可观察液面湍动状况而定)。进系统压缩空气压力应大于液封高度(再生塔溶液有效高程)。液面高度控制在低于泡沫溢流面10-20公分,让泡沫连续自由溢流最好。也可以采用间歇式溢流,但每3-4小时必须溢流一次。关键是找准溢流高度,做到心中有数,一般泡沫溢流面能占1/2~1/3即可。(连续熔硫没有滤清过程,泡沫溢流带清液过多,做的是无用功)。除此之外温度、碱度和催化剂含量过低、过高都影响硫泡沫生成和浮选。再生正常时,影响悬浮硫含量,主要是硫泡沫溢流量。总之,只有将硫拿出来了,便可免除硫堵的后顾之忧。

四、加强硫回收,熔硫及残液的处理回收

硫磺是湿式氧化法的副产品,回收熔硫就是将硫泡沫浓缩加工(物理过程),通常指硫泡沫的收集、过滤和熔硫及残液的处理回收。此环节各厂都不一样,五花八门,有的还不完善或不配套。大体可归纳为两大类:一种方式是将收集的硫泡沫过滤成滤饼(或硫膏),滤清液直接回循环槽。另一种方式是使用熔硫釜熔炼硫磺(有采用连续熔硫,也有间歇熔硫)。感觉小厂都不太重视,其实回收熔硫工艺操作,管理优化十分重要,非常有意义。在净化脱硫过程中,煤气中所夹带的杂质、赃物和生产中产生的废弃物,只能通过硫泡沫带入熔硫处理,排出系统外(唯一出口),故在加工硫磺的同时,也净化系统自身,是维护系统正常,稳定,有序运行的重要环节,也是脱硫、析硫再生、浮选、分离效果的总检验。

若使用间歇式熔硫或只回收硫膏,可根据硫的加温过程的物态变化,将泡沫槽(高位槽)的硫泡沫加温至65-70℃,静置半小时,分层后中间清液放回循环槽。上层和底部的泡沫硫过滤后,放入熔硫釜熔炼或压滤机。若是连续熔硫,最重要的是控制好进液量,蒸汽压力和熔硫温度的最佳配合,进行不断的实践摸索,找出规律。如副盐含量高时,温度也应该适当提高,有利产量的提高。熔硫釜中心温度一般控制在120-140℃,残液出口温度控制在85-95℃;又如:通过残液的排放量及颜色判断其工作状况。再如:如何维护好熔硫设备,发挥最佳的生产能力,需定期排放硫渣,保证其传热效果,改饱和蒸汽为过热蒸汽等。

残液处理到位,也是一个不可忽视的问题,要进行多级沉降过滤处理,将温度降下来,使副盐、硫渣、杂质、赃物等沉降下来,再经过滤,使其变成温度不高、无杂质的清液,方能返回系统,否则会干扰再生,不出泡沫或增大系统阻力。有些单位设置过滤机效果更好。

五、减排、降耗、增效

排液不但浪费资源,而且污染环境,但由于副盐超标使溶液质量下降,工况恶化。影响脱硫效率或系统压差增大等。在没有提盐装置的情况下,只有排液、稀释、降盐。从排放物分析,按指标确定的代表物来看,一般硫氰酸盐是硫代硫酸盐的4至8倍。这是因为焦炉煤气中HCN含量波动大且转化成的硫氰酸盐无法分解,再生只能越积越多。当两盐积累超标(两盐之和<280g/L,其中S2O3-≯150 g/L,CNS-≯200 g/L),若不降盐或提盐,会因小失大。如何减排,就得考虑怎么排?排什么?排向何处?若能设置一个较大容器,把要排的废液收集起来,进行降温、沉淀、过滤、静置,只排放副盐结晶稠物或饱和液,排向配煤场进行移动喷淋,部分清液回收,会减少损失,事半功倍。有的厂将事故槽利用起来,效果不错。当然,最好的办法还是通过工艺、设备、操作、管理的优化、改进、创新、控制副盐的增长速率或上提盐装置,再增加一两种产品来实现减排、降耗、增效。

顾名思义,脱硫就应该将解析的元素硫拿出来。关注硫磺产量及回收率,并非单纯追求其自身的价值,而是想通过对副产品硫磺成因、产率的探讨,并以此为切入点,对生产环节的梳理、揭示生产规律、影响因素,将生产纳入良性循环的控制,追求高效、低耗、长周期、安全、经济运行。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏
您需要登录后才可以回帖 登录 | 注册

本版积分规则

菲达环保-燃煤电厂烟气“超低排放”技术路线
苏夏-40公里长输低能耗热网技术发明专利及应用实例

Archiver|手机版|小黑屋|中国电力科技网 ( 鲁ICP备09062776号  

GMT+8, 2024-5-2 10:47

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表